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Excitation of unstable waves (Tollmien--Schlichting waves) due to the presence of one 
or the other type of free-stream disturbances with continuous spectra (acoustic, vortical, 
etc.) has been widely studied in recent times because of the need to predict boundary layer 
transition [i]. As a result of theoretical and experimental studies it has been established 
that tlle excitation of unstable waves takes place at spatial nonuniformities in the boundary 
layer flow [2]. The method of small disturbances which involves series solutions to linear- 
~zed Navier--Stokes equations in terms of eigenfunctions for the locally homogeneous problem 
[3] is widely used to analytically investigate the Tollmien--Schlichting wave generation. 
Here the disturbances characterizing fixed frequency and spatial growth are analyzed. In 
view of this it becomes necessary to analyze the complete system of eigenfunctions of the 
linearized Navier--Stokes equations for the spatially growing disturbances, assuming locally 
homogeneous conditions. The growth of initial disturbances in incompressible boundary layer 
has been solved in [4] using Laplace transformation in time. The completeness of the system 
of eigenfunctions of the linearized Navier--Stokes equations describing the temporal growth 
of disturbances in incompressible boundary layer has been sho~.m in [5] on the basis of 
results from [4]. For the spatially growing disturbances these equations remained unanswered. 
In the present paper an analysis has been carried out for the spatial growth of disturbances 
in compressible boundary layer. 

I. Formulation of the Problem. Consider plane parallel boundary layer flow. Coordi- 
nates are chosen such that Ox is in the direction of the flow and the axis Oy is perpendicu- 
lar to the plane surface. Let the length scale be the boundary layer thickness ~, let Uo be 
the reference velocity, To the reference temperature, 9o the reference density, 9oU~ the 
reference pressure, ~o the reference viscosity, and ~/Uo the reference time (the index 0 
indicates quantities in the free stream, outside the boundary layer). The coefficient of 
viscosity is assumed to be a function of temperature. The vector function A is determined 
for the two-dimensional disturbances: 

A1 = u, A2 = Ou/Oy, A 3 = V, A 4 = p ' ,  A5 = O, A o = O0/Oy, 

A7 = Ou/Ox, A S =  &~Ox, A~ = O0/Ox, 

where u, v are the fluctuations in the x and v velocity components respectively; p' is the 
pressure fluctuation; O is the temperature fluctuation. We write the linearized Navier-- 
Stokes equations after Fourier transformation in the form 

0 [L  OA ~ L OA OA ~ o~}-+  ~.-~-y =H,A+H~ o~, (1.1) 

where Lo, LI, HI, and Hu are 9 x9 matrices. Their nonzero elements are given in the appen- 
dix. The initial and boundary conditions are formulated: 

A ~ = A ~  = A ~  = 0  at ~ = 0 ,  
lAsl<oo ~ y- -~oo ( 1 = t  . . . . .  9), ( 1 . 2 )  

A =  Ao(y) ~ x = O .  

In formulating boundary conditions for the temperature fluctuation at y =0 in (1.2), it was 
assumed that the solid surface is made of a highly conducting material [6]. 

According to Adamar [7], the mixed problem (i.i), (1.2) is incorrectly posed. However, 
it can be regularized by assuming that Ao(y) allows solutions to linearized Navier--Stokes 
equations A(x, y) with finite growth rate, i.e., there exist such positive constants H, s 
that [Aj(x, y)] <~sx(j =i ..... 9). Integral relations that the vector Ao should satisfy 
are obtained below in an explicit form. 

>~scow. Translated from Zhurnal Prikladnoi ~lekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 110-118, July-August, 1983. Original article submitted ~y 25, 1982. 
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where  Z=II   . . . .  , z ~  
( 2 . 4 )  we g e t  

2. Solution to the Problem (i.i), (1.2). Using Laplace transforms to bring A(x, y) to 
the form Ap(p, y), where p is a complex variable, we get a system of equations 

dAp'~ ~_ LI dAv 
d Lo"~-~j] i = H I A v + p H ~ A v - : ' F ,  (2.1) 

F = --H,A o 

Solution to the system (2.1) is sought by using variational method for the constant. 
In the homogeneous system (2.1), equations for the first six components are split and brought 
to the well known Lees--Lin type system [6] for the vector z describing the first six compo- 
nents of the vector Ap: 

dz 'dy  --= Hoz , ( 2 . 2 )  

where Iio is a 6 x6 matrix (its nonzero elements are given in the appendix). Here the compo- 
nents of Apj(j --7, 8, 9) are uniquely determined from the first six components. The system 
(2.2) has six linearly independent solutions which have asymptotic dependence on y outside 
the boundary layer: zj ~exp(Xjy) (j =I, .... 6). The constants %j are determined by the 
relations [8] : 

;~L,2 = -+- V - p ' -  + lh,(p - io O, 

X.~ ~ = 4- (b, ,  -i- baa) + (b,., - -  b~3) ~ ~ b.a3b.~, 

' T (b'~2 - -  b8~)2 + b~abs~ ' 

bn tt~ 1, b22 rrl2II"-'* ' tI~3t1~ * @ mc'Tre'4 : =~-' 1 1 0  "tJO "'i- t x O  "c~O 

b2 3 42 25 , ~ i 4 3 f ~ 3 5  / j 4 f i / ~ 6 5  64 = H o l l o  - ' ~ , , o - o  - ~ - - o , , ~ ,  b 3 . , = H o ,  b 3 3 = H o  65, 

where lloiJ are the elements of the matrix Ho computed at y § Re is the Reynolds number; 
is the disturbance frequency; i is the complex unit vector. We fix the branches Real (%j) 
0 (j --i, 3, 5) and to get a unique solution make a cut in the plane of the variable p accord- 
ing to the equations X~ = -k2(j =i, 3, 5, k >0). For each linearly independent solution 
~j(j =i ..... 6) to the system (2.2) we write linearly independent solutions to the homo- 
geneous system (2.1). The solution to (2.1) is sought in the form 

A v = 7gQ(y) + y ,  y~ = 0 (i = 1, . . . ,  6), Y~ = --F~ (i = 7, 8, 9), 

where ~ =l]~, ..-, gs[l is the matrix of fundamental solutions (9 x6); Q is the unknown vec- 
tor-function with six components. For Q we get equations 

d~ dQ d~ dLo ~. dQ , L t  ~ dQ 
2Lo d.,/ d:/ +L~ '~  d;/ - i - - @  ~ .~=[, 

dF s 
/t  -:- F,  --- O, .[,~ = F , , - .  pH~;F  7 @ L~ a d!l ' 

]3=F.~" ]~==F~--pH~'~Fs .  ] ~ = F ~ = O ,  

pf l .  Fo, /~ = 0 (1 = 7, 8, .q). ( 2 . 3 )  

The s y s t e m  ( 2 . 3 )  c o n t a i n s  s i x  e q u a t i o n s  t o  d e t e r m i n e  t h e  s i x  c o m p o n e n t s  o f  t h e  v e c t o r  Q. 
A f t e r  s i m p l e  t r a n s f o r m a t i o n s  we b r i n g  ( 2 . 3 )  t o  t h e  f o r m  

ZdQ/dy  --= % % = 0, % = F e - pH~ 7 + 

-I-" L~SdFs/dg ~ ' --L~I, .~.  % = F 3 ,  

e&= __Itgal:  . . ~ . . F , , _ p H ~ , F s _ _ ~ , ~ ( L o . I :  3 t +-'~o , ,o I, 

q:, = O, % F~ , H  "~ =- -- t .,, r . ,  (2.4) 

i s  t h e  m a t r i x  o f  f u n d a m e n t a l  s o l u t i o n s  t o  t h e  s y s t e m  ( 2 , 2 ) .  S o l v i n g  

D 
Ap = a i i  d!/ ~ + Y ,  

'J  / 
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W = (let Z, D / W  = dQidy, ( 2 . 5 )  

where  t h e  c o n s t a n t s  a j ,  y j  s h o u l d  be  o b t a i n e d  f rom b o u n d a r y  c o n d i t i o n s  a t  y =0 and y +0~. 
A l t h o u g h  the  l a s t  t h r e e  componen t s  i n  Eq. ( 2 . 5 )  do n o t  e x p r e s s  a n y t h i n g  e x c e p t  t h e i r  
d e t e r m i n a t i o n  i n  t h e  v e c t o r  A as  a d e r i v a t i v e  o f  o t h e r  componen t s  w i t h  r e s p e c t  t o  x ,  t h e i r  
e v a l u a t i o n  i s  e s s e n t i a l  b e c a u s e  t h e i r  v a l u e  a t  x =0 i s  f u n d a m e n t a l  t o  t h e  s o l u t i o n .  F u r t h e r  
a t t e n t i o n  i s  c o n c e n t r a t e d  on t h e  f i r s t  s i x  componen t s  o f  t he  t h e  v e c t o r  Ap, Hence we w i l l  
d rop  t h e  v e c t o r  Y; t h e  l i n e a r l y  i n d e p e n d e n t  s o l u t i o n s  ~jj a r e  r e p l a c e d  by  z j .  I n  a c c o r d a n c e  
w i t h  t h e  c h o i c e  o f  t h e  b r a n c h  Xj and b o u n d a r y  c o n d i t i o n s  ( 1 . 2 ) ,  Ap i s  e x p r e s s e d  i n  t h e  f o r m  

( ! ) 5  ( i  ~ ) y Y D~ q- 
D1 dy z, dyz.,'-}- a z A p =  a~ + "W- + --if- �9 - -z~-, dy z, 

0 ' c~ 

D o D D 6 
al = T dyE~8~ § dYE4s~ + q ~  dyEe35 E'lss, 

o o 

�9 O ~' d y E j 3 s  -',- 0 6 dyEl~,5  E l a s ,  a3 = ~ dyElo .s  + ,j W , - i f "  
o o 

i i ]/ �9 D 4 ' D 6 
a a --- d y E l z . .  "l- "TU" d y E a 3 a  -~- - ' if" d y E l z G  E i a s ,  

,- '~ "o o 

zlj gth ] 

~z~i zsj zs~ 

where zij represents the i th components of the jth vector. Inverse Laplace transformation 
of (2.6) will be determined by the presence of branch points and poles. The function W(y) 
from (2.5) can be found from consideration of tile asymptotic expression for zj as y +~ using 
the well-known Jacobi function [9]: 

IV (y) = W (~)  exp [ !  Sp (Ho) dyJ. 

The constant W(~) cannot be zero because, when W =0 for a certain value of p, the chosen 
system zj becomes linearly dependent and it is then necessary to reconstruct the system of 
linearly independent vectors (similar to the analysis in [4]). The poles of (2.6) will be 
determined by the zeros of the function E13s(p). It is well known [6] that the dispersion 
relation E13s =0 determines the discrete spectrum of the linearized Navier--Stokes equations 
for Tollmien--Schlichting waves about which it is known, at least from the computed results, 
that all zeros of E135 have the real part Real(p) less than a certain finite number po. It 
could be as much greater than zero as it could be less than zero, depending on the parameters 
of the problem. Consider the structure of the cutouts in the plane of the complex variable 
p determined by the equations %~ = -k=(j =i, 3, 5, k >0). These equations are easily ana- 
lyzed asymptotically as k § ana k +=. For finite values of the parameter k, Reynolds num- 
ber, and the variable p, the equations were solved numerically. The structure of the cutouts 
thus obtained y](j •l, .... 7) is shown in Fig. i (~ch number M <i) and in Fig. 2 (M >i). 
We note that one of the cutouts Y7 for k +~ has the limiting point p, which it approaches 
along the line Im(p) =const. In the neighborhood of this point the solution to (2.6) is 
characterized by pressure fluctuation ~(p -- p,)-~/2. We also draw attention to the exis- 
tence of three cuts found in the half-plane Real(p) >0 and extending to infinity. Their 
existence reflects the incorrectness of the problem (i.i), (1.2). If it is required from 
the initial condition Ao that the solution to (2.6) should be continuous across the cut for 
all p satisfying the inequality Real(p) >s, then the problem will be regularized. Here, by 
closing the integration path F byanarcof a circle C r going around all the points of the 
branch as shown in Fig. 2, we get as r +~ the solution A(x, y) as a result of inverse Laplace 
transform, as the sum of the residues of the discrete poles Pv and integrals along two sides 
of the existing cuts. 
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Fig. 1 Fig. 2 

Consider in detail the computation of the contribution of integrals along the two sides 
of the cut Y I to the inverse Laplace transform: 

oo 

+ -  A;)dk, I1 = '.~m d a'-A7 
0 

where p(k) is determined by the equation %~ =--k 2, indices _+ indicate the values of functions 
at the upper and lower branches of the cuts shown in Fig. 2. On the upper branch of the cut 
XI =--ik, on the lower XI =ik. Express all integrals in terms of the values of the functions 
at the upper branches of cuts. Here for YI we have 

w - = - w  +, D ;  = - -  D~-,  D ;  = - -  D+~, D T =  - -  ~ j '  

(1 = 3 . . . . .  ~;), 

E~.r~ f + E;3:, + f ~ .  E+j, (7. k =/= t ,  2). = = E ,~ .  = ( 2 . 7 )  �9 "235~ 

Using (2.7), after elementary but tedious transformations, we get 

I (' .~dp 
I1 = .2~JO ~ ~ Cl [ E ~ z t  -- E:3~z~ + El~z3 -'.- Em~z~].% dk, 

0 

D1 ~ D2 D 4 (' De, 
t Et3r, -t-if- dy  ~ E23 ~ -'Fff- dy - -  E3~,~ ~ dy - -  E ~  5 ,t T dy , 

G t  = E l 3  E a :  ' o o o o ~','1 

where the index T1 denotes that p(k) is chosen in accordance with the equation for the cut 
Y,. The contribution from the integrals along the branches of the cut Yx equals zero if 
Ap + =A~. This will be satisfied when GI =0. On the cut Y2, also determined by the equation 
~ =--k 2, we find that the difference Ap + -- Ap is proportional to the expression 

r t Go =--- I E,3a q"C -dy @ E'~s " D. d y -  E84~, - -~  ! 
" Ei35 t : ' : 35  " ~ 0 0 ..i ~,~ 

One of the conditions for regularizing the problem is G2 =0 when Real(p) >s. Similar 
conditions are obtained on the cuts Y4, T~. Let us write the final result: 

7 

A(x,  y) = E' Res (Apevx) + ~ lj, ( 2 . 9 )  
J-:-I 

where 1 i correspond to the contributions from the integrals along the branches of cuts 7 i 
(in viewof the cumbersome expression their explicit form is not given); E' denotes summation of 
discrete set of poles. At present there are only numerical studies on discrete spectrum 
(analytical study is carried out only for the simplest cases [6]). Hence it is necessary 
to make the additional assumption that E' in (2.9) has significance. 

3. Biorthogonal Vector System. The following biorthogonal system of vectors {A~, B~} 
is determined: 
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d f d A  \ d A  
(Lo- f) + = + (3 .1 )  

A~I==A~ a = A ~  5 = 0  at y = 0 ,  ] A ~ j [ < ~  as y - + ~  ( i = |  . . . . .  9); 

d ( , dB a ~ dB~ , 

Br .... B ~ = B ~ 6 = O  at y = O ,  [ B ~ j I < ~  a s  y - + ~  (] = l  . . . . .  9). ( 3 . 2 )  

In  Eqs.  ( 3 o l ) ,  ( 3 . 2 ) ,  and i n  what  f o l l o w s  a i s  a complex  number;  * d e n o t e s  c o n j u g a t e  
m a t r i x ,  t he  b a r  above  i n d i c a t e s  complex c o n j u g a t e .  The sy s t em  (3 .1 )  c o i n c i d e s  w i t h  t he  homo- 
geneous p rob lem (2 .1 )  o The s y s t e m  (3 .2 )  d e t e r m i n e s  the  p rob lem c o n j u g a t e  to  ( 3 . 1 ) .  

A n a l y s i s  o f  t he  s p e c t r u m  o f  p o s s i b l e  e i g e n v a l u e s  a f o r  ( 3 . 1 ) ,  ( 3 . 2 )  was i n i t i a t e d  i n  
[ 1 0 ] .  There  i s  a d i s c r e t e  s p e c t r u m  c o r r e s p o n d i n g  to  T o l l m i e n - - S c h l i c h t i n g  waves and a con -  
t i n u o u s  s p e c t r u m .  Cuts  y j  i n  F i g s .  1 and 2 a c t u a l l y  c o r r e s p o n d  to  t h e  c o n t i n u o u s  s p e c t r u m  
o f  a i f  t h e  e q u a l i t y  p = i a  i s  u sed .  The f o l l o w i n g  c o n d i t i o n  f o r  o r t h o g o n a l i t y  i s  v a l i d :  

" <H~A~, n,> = A ~ ,  <A, B> = f(A,  B ) d ! l ~  "-~-~1 [AjBjd~,  ( 3 . 3 )  

where haB =6aB is the Kronecker symbol, if one of the numbers belongs to the discrete spec- 
trum; &aB =6(a -- B) is the delta function if both the numbers belong to the continuous 
spectrum [5]. 

The solution to (3.1) for the discrete spectrum can be written in the form 

A~ =- e ,~  + c:,~ ~ e ~ ,  

where one of the constants is arbitrary in view of the linearity of the problem and two 
others are determined from boundary conditions at y =0. Vectors ~j coincide with linearly 
independent solutions to the homogeneous system (2.1). Here and in what follows, results 
from earlier sections for p =in are used. Since there are three boundary conditions at y = 
0, there is an eigenvalue problem E~3~(ia) =0 and a discrete spectrum results. Each of the 
branches of the continuous spectrum is obtained ~en for a certain j(j =i, 3, 5)%j = • 
(k >0). In this case, limited as y~m, the solution is made up of four linearly independent 
solutions. Here all constants are determined accurately to the order of the choice of nor- 
malization of the solution to the problem (3.1). For example, for the continuous spectrum 
determined by the equation %~ =-,ik, the solution to (3.1) is written in the form 

A~ = f~s~l - -  E13~ + Em~ + E ~ ,  

which  c o i n c i d e s  w i t h  t h e  v e c t o r i a l  p a r t  o f  t h e  s u b i n t e g r a l  e x p r e s s i o n  f o r  I~ i n  ( 2 . 8 )  and 
( 2 . 9 ) .  S i m i l a r l y ,  i t  i s  p o s s i b l e  to  show t h a t  a l l  s u b i n t e g r a l  e x p r e s s i o n s  o f  I j  i n  (2 .9 )  
a r e  p r o p o r t i o n a l  to  one o f  t he  e i g e n s o l u t i o n s  t o  ( 3 . 1 )  f rom th e  c o n t i n u o u s  s p e c t r u m .  

4.  Comple t eness  o f  t h e  System o f  E i s e n f u n c t i o n s .  Assuming t h e  c o m p l e t e n e s s  o f  t he  
s y s t e m  {Aa, Ba}, t h e  f o r m a l  s o l u t i o n  to  t h e  p rob lem (1 .1 )  and ( 1 . 2 )  i s  w r i t t e n  i n  t h e  form 

A(x ,y )  = E'<H~Ao, l~v?e A~v + <.H~Ao,~>e A~dk~, (4.1) 
~ = ~  

where a~ corresponds to the solution of the discrete spectrum with the number ~; Aa~, Ba~ 
are solutions to (3.1) and (3.2), corresponding to av, Z' is the sum of all solutions of the 
discrete spectrum; aj corresponds to the continuous spectrum with number j; Aaj, Baj are 
solutions to (3.1) and (3.2) when a =aj; kj is a real parameter that determines the continu- 
ous spectrum with number j. In order to regularize the problem (i.i) and (1.2) we require 
that from initial conditions Ao it should be possible to determine the solution with finite 
growth rate downstream. This requirement was already discussed while obtaining the solution 
with Laplace transform that in a formal representation of the solution (4.1) can also be 
expressed in the form of an integral relation <HaAo, Baj> =0, which should be satisfied for 
all aj with Real(iaj) >s. 

In order to establish the completeness of the system {An, Be} from (3.1) and (3.2) it 
is necessary to prove that the formal solution to (4.1) coincides with (2.9). It was made 
clear earlier that the subintegral expressions in lj from (2.9) are proportional to exp(iaj) 
A~j. On the basis of Ix obtained by integrating along the cut Va, we show that G~ from (2.8) 
is proportional to <Ha&o, B~>. G~ is written in the form 
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cc 

G, t E , .~  - W -  ' E T - -  E ~ ,  -W" - -  Es~'~ ~ dy .  
...... E t 3 5 E ~ 2 5  2 3 5  

H e r e  Dj o b t a i n e d  f r o m  t h e  s o l u t i o n  o f  t h e  a l g e b r a i c  s y s t e m  ( 2 . 4 )  a r e  c o m p u t e d  a s  t h e  d e t e r -  
m i n a n t s  of the matrix of fundamental solutions Z, in which the j-th column is replaced by 
the vector ~ from (2.4). It is not difficult to show that Dj/W = (~, %7), where Xj is a 
linearly independent solution to the system of equations conjugate with (2.2) of the problem 
[ l l ] :  

- -  d z / d y  = 11o% , 

%, ":  X, = %c, : : i )  when y = 0, I X / I <  co when ! l - ~  oo U = 1  . . . . .  ~). ( 4 . 2 )  

It is possible to verify that the vector function 

s a t i s f i e s  b o u n d a r y  c o n d i t i o n s  f r o m  ( 4 . 2 ) .  Then  we f i n d  t h a t  Gz i s  p r o p o r t i o n a l  t o  <~,  %> - 
D i r e c t  c o m p u t a t i o n s  s h o w  t h a t  t h e r e  e x i s t s  a c o r r e s p o n d e n c e  b e t w e e n  p r o b l e m s  ( 3 . 2 )  a n d  ( 4 . 2 ) :  

B,~ == Z t -  i'~Lao~Z~ d, B ~  = %.., 

- -  L, o F/~ ~4 - -  L'o /10 ~6 a ,  

d =-= ( t  ! L~ZH~'). (4.35 

Using (4.3), solution ~ from (2~ we get <~, %~) = <F, B~> = -<H=Ao, B~>, where the index 
denotes that the solutions to (4.2) and (3.2) are found for the eigenvalue ~. Thus, for 

all j =i, ..., 7 it has been established that the subintegral expressions in lj are propor- 
tional to <H=Ao, B~j>. 

Proceeding along the lines used in [5], we come to the proportionality ~' from (2.9) 
and (4.1). Further, in order to establish that all the final constants of proportionality 
are equal to one, we specify for Ao one of the eigenfunctions A~ from (3.1). Using the 
orthogonality relation (3.3) and considering (2.9) at x =0, the constants of proportionality 
are found to be equal to one. Thus we have proved that (2.9) is identical with (4.1) which 
establishes the completeness of the system {A~, B~} from (3.1) and (3.2). We note that the 
proof could have been obtained without using the well-known properties of the solution to 
(2.9) which was obtained with Laplace transforms (at x =0, it coincides with Ao). In order 
to do this it is necessary to compute the constant of proportionality for A~ in (3.3) for 
an arbitrary normalization of the solution to (3.1) and (3.2). This procedure was also fol- 
lowed but not discussed here because it is extremely tedious. 

APPENDIX 

L~ : ~ = - r W R e ,  L~ ~ - 1  ( i = l  . . . . .  t~), L~ ~ = ( m + l ) ,  

H~ t ----- - -  i t o R e / p , T ,  1t~" := - -  D~a/p, t l ' i  :~ = Re  D U / ~ t T ,  

= -- (ix D&),,b~, 

i / ~  6 , ~ = �9 . . . . .  = --  - -  t~ D+ /,u~, I t ?  DJ+r,  HP'=+o ,  VM-, 1q + . . . .  +:,,/r, ~:+ 
= i(o,/T, 

H~ ~ = - -  2 (y - -  t)  M " o D U ,  H~ a =- Be z D T / p T ,  l t ~  t = io) (3' - -  1) M"- He o',:'I.~ , 

H~ 5 = - -  D (~t 'DT)/ t~ - -  i(o Re o / p r ,  H~  ~ = - -  .D?<" 'p ,  

H P  = ., = R e U / p T ,  H'; a - -  Dp/t , t ,  HY, '+ : Re /p ,  t l ~  7 : = - -  r ,  

H i '  = a y  = - -  t ,  11~ ~ = - v~r  u ,  H T,? = U / T ,  ~'1~' = m n . / R ~ ,  

t l ~  "~ = ( m  -[- t)  p /Re,  I t~  3 = - -  U / T ,  t t ~  s f D U / P ~ c ,  I1~ 8 = p/Re,  
U 63 9 = - -  ( ? - -  I)M:tTDU, H~ ~ - ,., -~ - -  (? - -  t) 3F  Re tyU/p, H~ '~ = l ie  U o / p  T, 

H ~  2 = H~o e = i ,  H ~  ~ =: - -  p'- + ( p U  - -  i(o) Rely,  T,  I to"  = - -  D i f f p ,  

H~ a = - -  p (re + i)  D T / T  - -  p D p / b t  + Re D U / p T ,  

H~ a = p Re/p  + (m + i)  ?Mep (pU - -  i(o), 
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H~ ~ = i p  (m -~- 1) (ico - -  p U ) / T - -  D (~ 'OU)/~ t ,  H~ ~ = - -  ~t'DU/$t, H ~ = - - p ,  

H~'  = D T / T ,  H~ ~ = ?M"- (io - -  p V ) ,  H~ ~ = (pU - -  ~ o , ) I r ,  

H~ ~ = - -  fJp ( r D T / T  + 2Dvt/p), H~" = - -  ~p, 

iI4os = ~ [__ p2 + (ito - -  p U ) R e / p T  + r D Z T / T  + rD~. tDT/~TJ,  

II~ 4 := - -  ~ r y M "  [pOU + ( vU  - -  Z(o) ( D T / T  + Dp/gt)I, 

H~o ~ = f~ [ r p D U  / T ~- ~t ' p D U  /[L - -  r ( io) - -  p U )  Dp/$  TI, 

H~ a = - -  ~r  (i(o - -  p U ) / T ,  H~ 2 = -- '2 (?  - -  i)  M'-'oDU, 

Ho ~a = - -  2 (?  - -  t )  M'2(II)DU -i- Re o D T / ~ t T ,  H ~  4 = (? - -  I) 51 ~ Re  e ( io ) - -pU) / t~ ,  

I t~  ~ = -- P" -r' Re ff ( p U  - -  i (o) /9T - -  (7 - -  1) M"o~t' ( D U ) " / ~  - -  D':$t/t, t, 

tI~o ~ = - -  2D~t/,u. 

Here the following notation has been used: U(y), T(y) are velocity and temperature profiles 
of the mean flow; y is the adiabatic index; M is the Mach number; Re is the Reynolds number; 

is Prandtl number; r =(2/3)(e +2); m = (2/3)(e ~ i); e is the ratio of the second coeffi- 
cient of viscosity to the first; v(T) is the first coefficient of viscosity: ~' =d~/dT; D = 
d/dy; B =[Re/~ +ryM2(pU ~ im)]-x; m is the disturbance frequency. 
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